Geometric Structure of High Dimensional Data and Dimensionality Reduction English Version Chinese Edition by Wang Jian Zhong – Ebook PDF Instant Download/Delivery: 7040317044, 9787040317046
Full download Geometric Structure of High Dimensional Data and Dimensionality Reduction English Version Chinese Edition after payment

Product details:
ISBN 10: 7040317044
ISBN 13: 9787040317046
Author: Wang Jian Zhong
Annotation “Geometric Structure of High-Dimensional Data and Dimensionality Reduction” adopts data geometry as a framework to address various methods of dimensionality reduction. In addition to the introduction to well-known linear methods, the book moreover stresses the recently developed nonlinear methods and introduces the applications of dimensionality reduction in many areas, such as face recognition, image segmentation, data classification, data visualization, and hyperspectral imagery data analysis. Numerous tables and graphs are included to illustrate the ideas, effects, and shortcomings of the methods. MATLAB code of all dimensionality reduction algorithms is provided to aid the readers with the implementations on computers. The book will be useful for mathematicians, statisticians, computer scientists, and data analysts. It is also a valuable handbook for other practitioners who have a basic background in mathematics, statistics and/or computer algorithms, like internet search engine designers, physicists, geologists, electronic engineers, and economists. Jianzhong Wang is a Professor of Mathematics at Sam Houston State University, U.S.A
Table of contents:
-
Introduction
-
Data Geometry
-
Linear Dimensionality Reduction
-
Nonlinear Dimensionality Reduction
People also search for:
geometric structure of high-dimensional data and dimensionality reduction
what is geometric structure
strongest geometric structure
what are structural and geometric isomers
geometric structure of h2o
geometric structure of molecules
Tags: Wang Jian Zhong, Geometric, Structure, High, Dimensional, Data, Dimensionality, Reduction


