Soil Mechanics Fundamentals and Applications 2nd Edition by Isao Ishibashi, Hemanta Hazarika – Ebook PDF Instant Download/Delivery: 1482250438, 9781482250435
Full download Soil Mechanics Fundamentals and Applications 2nd Edition after payment
Product details:
ISBN 10: 1482250438
ISBN 13: 9781482250435
Author: Isao Ishibashi, Hemanta Hazarika
Soil Mechanics Fundamentals and Applications 2nd Edition:
How Does Soil Behave and Why Does It Behave That Way?
Soil Mechanics Fundamentals and Applications, Second Edition effectively explores the nature of soil, explains the principles of soil mechanics, and examines soil as an engineering material. This latest edition includes all the fundamental concepts of soil mechanics, as well as an introduction to foundation engineering, including coverage of site exploration, shallow and deep foundation design, and slope stability. It presents the material in a systematic, step-by-step manner, and contains numerous problems, examples, and solutions.
New to the Second Edition:
The revised text expands the contents to include an introductory foundation engineering section to make the book cover the full range of geotechnical engineering. The book includes three new chapters: Site Exploration, Deep Foundations, and Slope Stability.
This text:
- Provides an introductory chapter on soil mechanics
- Explores the origin and description of soils and discusses soil shapes and gradations
- Presents the unique characteristics of clays
- Details soil classifications by the Unified Soil Classification System (also ASTM) and by the American Association of State Highway and Transportation Officials (AASHTO)
- Highlights laboratory and field compaction techniques, including field specification and density testing,, and the CBR (California Bearing Ratio) method
- Discusses the flow of water through soils, defining hydraulic heads, as well as the two-dimensional flow net technique and a systematic approach to compute boundary water pressures
- Examines the concept of effective stress and its applications to various soil mechanics problems
- Explores stress increments in a soil mass due to various types of footing load on the ground
- Presents Terzaghi’s one-dimensional consolidation theory and its applications
- Covers Mohr’s circle from geotechnical perspectives with use of the pole, which is utilized in chapters relating to shear strength and lateral earth pressure
- Addresses the shear strength of soils, failure criteria, and laboratory as well as field shear strength determination techniques
- Evaluates at-rest earth pressure and the classic Rankine and Coulomb active and passive pressure theories and present critical review of those methods
- Reviews introductory foundation engineering and site exploration
- Describes the bearing capacity theory and, as an application, the shallow foundation design procedure
- Covers deep and shallow foundation design procedures
- Explains slope stability problems and remediation procedures, and more
Soil Mechanics Fundamentals and Applications, Second Edition is a concise and thorough text that explains soil’s fundamental behavior and its applications to foundation designs and slope stability problems and incorporates basic engineering science knowledge with engineering practices and practical applications.
Soil Mechanics Fundamentals and Applications 2nd Edition Table of contents:
Introduction
Soil Mechanics and Related Fields
Biography of Dr. Karl von Terzaghi
Uniqueness of Soils
Approaches to Soil Mechanics Problems
Examples of Soil Mechanics Problems
References
Physical Properties of Soils
Introduction
Origin of Soils
Soil Particle Shapes
Definitions of Terms with Three-Phase Diagram
Particle Size and Gradation
Summary
References
Clays and Their Behavior
Introduction
Clay Minerals
Clay Shapes and Surface Areas
Surface Charge of Clay Particles
Clay-Water Systems
Interaction of Clay Particles
Clay Structures
Atterberg Limits and Indices
Activity
Swelling and Shrinkage of Clays
Sensitivity and Quick Clay
Clay Versus Sand
Summary
References
Soil Classification
Introduction
Unified Soil Classification System (USCS)
AASHTO Classification System
Summary
References
Compaction
Introduction
Relative Density
Laboratory Compaction Test
Specification of Compaction in the Field
Field Compaction Methods
Field Density Determinations
California Bearing Ratio Test
Summary
References
Flow of Water through Soils
Introduction
Hydraulic Heads and Water Flow
Darcy’s Equation
Coefficient of Permeability
Laboratory Determination of Coefficient of Permeability
Field Determination of Coefficient of Permeability
Flow Net
Boundary Water Pressures
Summary
References
Effective Stress
Introduction
Total Stress Versus Effective Stress
Effective Stress Computations in Soil Mass
Effective Stress Change due to Water Table Change
Capillary Rise and Effective Stress
Effective Stress with Water Flow
Quicksand (Sand Boiling)
Heave of Clay due to Excavation
Summary
References
Stress Increments in Soil Mass
Introduction
Approximate Slope Method
Vertical Stress Increment due to a Point Load
Vertical Stress Increment due to a Line Load
Vertical Stress Increment due to a Strip Load
Vertical Stress Increment under a Circular Footing
Vertical Stress Increment under an Embankment Load
Vertical Stress Increment under Corner of Rectangular Footing
Vertical Stress Increment under Irregularly Shaped Footing
Summary
References
Settlements
Introduction
Elastic Settlements
Primary Consolidation Settlement
One-Dimensional Primary Consolidation Model
Terzaghi’s Consolidation Theory
Laboratory Consolidation Test
Determination of Cv
e-log σ Curve
Normally Consolidated and Overconsolidated Soils
Final Consolidation Settlement for Thin Clay Layer
Consolidation Settlement for Multilayers or a Thick Clay Layer
Summary of Primary Consolidation Computations
Secondary Compression
Allowable Settlement
Ground-Improving Techniques against Consolidation Settlement
Summary
References
Mohr’s Circle in Soil Mechanics
Introduction
Concept of Mohr’s Circle
Stress Transformation
Mohr’s Circle Construction
Sign Convention of Shear Stress
Pole (Origin of Planes) of Mohr’s Circle
Summary of Usage of Mohr’s Circle and Pole
Examples of Usage of Mohr’s Circle and Pole in Soil Mechanics
Summary
Reference
Shear Strength of Soils
Introduction
Failure Criteria
Direct Shear Test
Unconfined Compression Test
Triaxial Compression Test
Other Shear Test Devices
Summary of Strength Parameters for Saturated Clays
Applications of Strength Parameters from CD, CU, and UU Tests to In Situ Cases
Strength Parameters for Granular Soils
Direction of Failure Planes on Sheared Specimen
Summary
References
Lateral Earth Pressure
Introduction
At-Rest, Active, and Passive Pressures
At-Rest Earth Pressure
Rankine’s Lateral Earth Pressure Theory
Coulomb’s Earth Pressure
Lateral Earth Pressure due to Surcharge Load
Coulomb, Rankine, or Other Pressures?
Summary
References
Site Exploration
Introduction
Site Exploration Program
Geophysical Methods
Borehole Drilling
Standard Penetration Test
Undisturbed Soil Samplers
Groundwater Monitoring
Cone Penetration Test
Other In Situ Tests
Summary
References
Bearing Capacity and Shallow Foundations
Introduction
Terzaghi’s Bearing Capacity Theory
Generalized Bearing Capacity Equation
Correction due to Water Table Elevation
Gross Versus Net Bearing Capacity
Factor of Safety on Bearing Capacity
Shallow Foundation Design
Summary
References
Deep Foundations
Introduction
Types of Piles
Load Carrying Capacity by Static Analytical Methods
Static Pile Capacity on Sandy Soils
Static Pile Capacity in Cohesive Soils
Other Methods of Pile Capacity Estimation
Negative Skin Friction
Group Pile
Consolidation Settlement of Group Piles
Pullout Resistance
Summary
References
Slope Stability
Introduction
Slope Failure
Slope Stability Analytical Methods
Slope Stability of a Semi-infinitely Long Slope
Stability Analysis for Circular Slip Surface
Analysis for Multiple Liner Sliding Surfaces
Stabilization for Unstable Slopes
Summary
References
Numerical Answers to Selected Problems
People also search for Soil Mechanics Fundamentals and Applications 2nd Edition:
soil mechanics and foundation engineering fundamentals and applications
importance of soil mechanics
application of soil mechanics
what is soil mechanics
soil mechanics jobs
Tags:
Isao Ishibashi,Hemanta Hazarika,Soil,Mechanics,Fundamentals,Applications