The fourth Janko group 1st edition by Ivanov – Ebook PDF Instant Download/Delivery: 9780191523625, 0191523623
Full download The fourth Janko group 1st edition after payment

Product details:
ISBN 10: 0191523623
ISBN 13: 9780191523625
Author: Ivanov
This text illustrates how different methods of finite group theory including representation theory, cohomology theory, combinatorial group theory and local analysis are combined to construct one of the last of the sporadic finite simple groups – the fourth Janko group J_4. Aimed at graduates and researchers in group theory, geometry and algebra, Ivanov’s approach is based on analysis of group amalgams and the geometry of the complexes of these amalgams with emphasis on the underlying theory. An indispensible resource, this book will be a unique and essential reference for researchers in the area. The author is a leading researcher in the field.
The fourth Janko group 1st Table of contents:
1 Concrete group theory
1.1 Symplectic and orthogonal GF(2)-forms
1.2 S[sub(2m)](2), O[sup(+)][sub(2m)](2), and O[sup(–)][sub(2m)](2)
1.3 Transvections and Siegel transformations
1.4 Exterior square via symplectic forms
1.5 Witt’s theorem
1.6 Extraspecial 2-groups
1.7 The space of forms
1.8 S[sub(4)](2) and Sym[sub(6)]
1.9 Ω[sup(+)][sub(6)](2), Alt[sub(8)], and L[sub(4)](2)
1.10 L[sub(2)](7) and L[sub(3)](2)
2 O[sup(+)][sub(10)](2) as a prototype
2.1 Dual polar graph
2.2 Geometric cubic subgraphs
2.3 Amalgam H = {H[sup([0])], H[sup([1])]}
2.4 The universal completion
2.5 Characterization
3 Modifying the rank 2 amalgam
3.1 Complements and first cohomology
3.2 Permutation modules
3.3 Deck automorphisms of 2[sup(6)] : L[sub(4)](2)
3.4 Automorphism group of H[sup([01])]
3.5 Amalgam G = {G[sup([0])],G[sup([1])]}
3.6 Vectors and hyperplanes in Q[sup([0])]
3.7 Structure of G[sup([1])]
3.8 A shade of a Mathieu group
4 Pentad group 2[sup(3+12)] · (L[sub(3)](2) × Sym[sub(5)])
4.1 Geometric subgroups and subgraphs
4.2 Kernels and actions
4.3 Inspecting N[sup([2])]
4.4 Cohomology of L[sub(3)](2)
4.5 Trident group
4.6 Automorphism group of N[sup([2])]
4.7 {D[sub(12)], D[sub(8)]}-amalgams in Sym[sub(6)]
4.8 The last inch
4.9 Some properties of the pentad group
5 Towards 2[sup(1+12)][sub(+)] · 3 · Aut (M[sub(22)])
5.1 Automorphism group of N[sup([3])]
5.2 A Petersen-type amalgam in G[sup([3])
5.3 The 12-dimensional module
5.4 The triviality of N[sup([4])]
6 The 1333-dimensional representation
6.1 Representations of rank 2 amalgams
6.2 Bounding the dimension
6.3 On irreducibility of induced modules
6.4 Representing G[sup([0])]
6.5 Restricting to G[sup([01])]
6.6 Lifting Π[sup([01])][sub(11)]
6.7 Lifting Π[sup([01])][sub(22)]
6.8 Lifting Π[sup([01])][sub(12)] ⊕ Π[sup([01])][sub(21)]
6.8.1 24-dim representations of C[sub(G[1])] (h)
6.8.2 Structure of Π[sup((h))][sub(12)]
6.8.3 Structure of Π[sup((h))][sub(21)]
6.8.4 Gluing
6.9 The minimal representations of G
6.10 The action of G[sup([2])]
6.11 The centralizer of N[sup([2])]
6.12 The fundamental group of the Petersen graph
6.13 Completion constrained at level 2
7 Getting the parabolics together
7.1 Encircling 2[sup(1+12)][sub(+)] · 3 · Aut (M[sub(22)])
7.2 Tracking 2[sup(11)] : M[sub(24)]
7.3 P-geometry of G[sup([4])]
7.4 G[sup([4]) = G
7.5 Maximal parabolic geometry D
7.6 Residues in D
7.7 Intersections of maximal parabolics
8 173,067,389-vertex graph Δ
8.1 Defining the graph
8.2 The local graph of Δ
8.3 Distance two neighbourhood
8.3.1 Analysing 2-paths
8.3.2 Calculating μ2
8.3.3 Calculating μ3
8.3.4 The μ-subgraphs
8.4 Earthing up Δ[sup(1)][sub(3)](a)
8.5 Earthing up Δ[sup(2)][sub(3)](a)
8.6 | G | = 2[sup(21)] · 3[sup(3)] · 5 · 7 · 11[sup(3)] · 23 · 29 · 31 · 37 · 43
8.7 The simplicity of G
8.8 The involution centralizer
9 History and beyond
9.1 Janko’s discovery
9.2 Characterizations
9.3 Ronan–Smith geometry
9.4 Cambridge five
9.5 P-geometry
9.6 Uniqueness of J[sub(4)]
9.7 Lempken’s construction
9.8 Computer-free construction
9.9 The maximal subgroups
9.10 Rowley–Walker diagram
9.11 Locally projective graphs
9.12 On the 112-dimensional module
9.13 Miscellaneous
10 Appendix: Terminology and notation
10.1 Groups
10.2 Amalgams
10.3 Graphs
10.4 Diagram geometries
11 Appendix: Mathieu groups and their geometries
11.1 Witt design S(5, 8, 24)
11.2 Geometries of M[sub(24)]
11.3 Golay code and Todd modules
11.4 Shpectorov’s characterization of M[sub(22)]
11.5 Diagrams of H(M[sub(24)])
11.6 Diagrams of H(M[sub(22)])
References
Index
People also search for The fourth Janko group 1st:
the janko group
the fourth gen gamer
the fourth group
the four j
f the fourth
Tags: fourth, Janko group, Ivanov


